

Northeastern

Craig F. Ferris1, Praveen Kulkarni1, Jason Yee1, Mark Nedelman2, Inge E.M. de Jong3* 1Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA, 2Ekam Imaging, Boston, MA, USA, 3Division of Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark

Abstract

The 5-HT₆ receptor is a promising target for cognitive disorders, in particular for Alzheimer's disease (AD). The high-affinity and selective 5-HT₆ receptor antagonist idalopirdine (Lu AE58054) is currently in development for mild-moderate AD as adjunc therapy to acetylcholinesterase inhibitors (AChEIs). We studied the effects of idalopirc alone and in combination with the AChEI donepezil on brain activity using BOLD (Blood Oxygen Level Dependent) functional magnetic resonance imaging (fMRI) in the awake Idalopirdine alone had a modest effect on brain activity, with a slow onset of activity. Donepezil alone showed much greater activity with an earlier peak onset. Activity included sites of cholinergic innervation, cortical regions, areas of the septo-hippocam system and the serotonergic raphe nucleus. When idalopirdine and donepezil were combined, there was a robust stimulation pattern with activation of 36 brain regions spread across the extended-amygdala-, striato-pallidal and septo-hippocampal networ well as the cholinergic system. These findings indicate that, whilst idalopirdine and donepezil recruit a number of overlapping regions including one of the forebrain cholinergic nuclei, the synergistic effect of both compounds extends beyond the cholinergic system and the effects of donepezil alone towards recruitment of multiple neural circuits and neurotransmitter systems. These data provide new insight into the mechanisms via which idalopirdine might improve cognition in donepezil-treated AD patients.

Materials & Methods

Study and Imaging Protocols

Studies were performed on a Bruker BioSpec 7T / 20cm USR. Anatomical data set was collected using RARE pulse sequence (20 slice; 1.2 mm; field of vision [FOV] 3.0 cm; 256 × 256; repetition time [TR] 2.5 se echo time [TE] 12.4 msec; NEX 6; 6.5 minute acquisition time). Functional images were acquired using a multi-slice half Fourier acquisition, single shot, turbo spin echo sequence. A single scanning session acqui 22 slices, 1.0 mm thick, every 6.0 seconds (TR 6.0 sec, TE 48 msec, FOV 3.0 cm, matrix size 96 x 96, NEX 1 repeated 500 times for a total time of 50 min. The in-plane pixel resolution is 312 μm². Each scanning ses was continuous for 50 min, starting with 50 baseline image acquisitions during 5 minutes prior to treatme then drug presentation followed by 450 image acquisitions during the following 45 minutes.

Adult male Sprague Dawley rats were divided into four groups: vehicle (n=9), idalopirdine (n=10), donepezil (n=8), idalopirdine/donepezil (n=9). All drugs were given i.v. through a tail vein catheter during imaging session. Idalopirdine (Lu AE58054, Lundbeck) was dissolved in 5% HpBeta cyclodextrin in distilled water and evaluated at the dose of 2 mg/kg. Donepezil hydrochloride (Lundbeck) was dissolved in 5% HpBeta cyclodextrin in distilled water and evaluated at the dose of 0.3 mg/kg. The combination of idalopirdine (2 mg/kg) and donepezil (0.3 mg/kg) was also evaluated. In previous studies we have demonstrated that these doses of idalopirdine and donepezil result in clinically relevant exposure of both compounds and high 5-HT₆ receptor occupancy up to an hour after administration. The vehicle control wa 5% HpBeta cyclodextrin in distilled water. All injections were given in a volume of 1ml/kg.

Acclimating Rats for the Imaging Protocol

Adult, male Long Evans rats were lightly anesthetized, and placed into a copy of the restraining syster used during awake imaging. When fully conscious, the animals were placed into a dark mock scanner tub with a recording of a standard MRI pulse sequence playing in the background. This procedure when repe every other day for four days has been shown to significantly reduce plasma CORT, respiration, heart rate and motor movements when compared to the first day of acclimation. The reduction in autonomic and somatic response measures of arousal and stress improve the signal resolution and MR image quality. (Ki et al. 2005)

Imaging Analysis

Functional MRI data analysis included four primary steps: 1) preprocessing, including slice timing correction, co-registration, smoothing and de-trending; 2) registration to rat brain atlas, followed by segmentation; 3) voxel-wise statistical analysis for each individual identify voxels that experienced a signal change in relation to baseline; 4) group comparisons on the number of activated voxels per ROI and neural network. Preprocessing of functional scans was performed using in-house MATLAB[®] (The Mathworks, Inc, Natick MA.) software in combination with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) batch interface. Preprocessed functional files were then exported to Medical Image Visualization and Analysis (MIVA) for registration and segmentation. The mean functional image (output from SPM) was used to register images to the rat atlas since the quality of the functional scans are structurally superior to those obtained using gradient echo (GRE) or echo planar imaging (EPI) sequences as noted above in the figure to the right.

Awake Rat Imaging System

Quad transmit/receive volume coil built into the head holder

Studies were performed with a quad transmit/receive head coil and rat restrainer developed by Animal Imaging Research, Holden, Massachusetts

Mapping brain neural circuitry in response to pro-cognitive therapeutics: a pharmacological MRI study in the awake rat

	Tim	Time-Dependent Changes in Activi						
			Donepezil			D		
ct			Region of Interest(ROI)	Ve	h DON 1	V P val		
dine	1		dorsal raphe	0	8	0.012		
d			medial septum	0	3	0.02		
e rat.			medial orbital ctx	0	16	0.022		
		ent	ventral pallidum	0	12	0.027		
npal		ů.	insular ctx	14	22 107	0.028		
	zil	eat	superior colliculus	29) 112	2 0.03		
rkana	be	Ľ	frontal association ctx	0	10	0.032		
rksas	ne	ost	inferior colliculus	41	108	0.034		
	ă	P P	primary somatosensory ctx upper li dentate gyrus ventral	р U 1	41	0.041		
		nir	anterior olfactory nucleus	0	33	0.043		
2		5	external plexiform layer	23	56	0.047		
		5-2	dorsal paragigantocellularis nucleu	s 0	3	0.047		
		,	ventral orbital ctx	0	4	0.048		
			entorninal ctx	2/	14/	0.048		
			intercalated amygdaloid nucleus	0	0	0.045		
			Donepezil/Idalopir	idine	e			
			Region of Interest(ROI)	Vob /	- .59/n	Dval		
			infralimbic ctx	0	39	0.006		
g the			granular cell layer	15	81	0.006		
ec;			accumbens shell	0	13	0.006		
ired			anterior olfactory nucleus	0	33	0.007		
.) ssion			lateral preoptic area	0	8 19	0.008		
ent,			ventral pallidum	0	5	0.009		
			triangular septal nucleus	0	9	0.012		
; the			medial preoptic area	0	26	0.012		
a		Ę	3rd cerebellar lobule	4	22	0.013		
	ne	Jen	lateral posterior thalamic nucleus	8	45 75	0.013		
h	idi	atr	accumbens core	9 0	2	0.013		
vas	id	rea	medial dorsal thalamic nucleus	2	11	0.019		
	alo	st T	dentate gyrus ventral	4	24	0.019		
m	/Iq	Pos	prelimbic ctx	1	18	0.023		
oe Sets d	zil	in'	lateral septal nucleus bod nucleus stria terminalis	16 2	45 14	0.024		
eated e,	be	Ε	diagonal band of Broca	0	7	0.026		
	ů l	-30	medial pretectal area	0	0	0.028		
ing	ă	25	tenia tecta ctx	8	47	0.029		
al			posterior hypothalamic area	0	18	0.03		
u			anterior cingulate area	4 4	50 35	0.03		
			frontal association ctx	0	7	0.032		
			reuniens nucleus	0	3	0.033		
			primary somatosensory ctx trunk	0	10	0.033		
			magnocellular preoptic nucleus	0	1	0.035		
			central gray narafascicular thalamic nucleus	2	7 21	0.037		
			external plexiform layer	29	43	0.038		
			glomerular layer	23	92	0.038		
			ventromedial thalamic nucleus	0	6	0.045		
			premammillary nucleus	2	4	0.048		
	3		uorsomediai tegmentai area primary somatosensory cty hindlimh	0	э 43	0.05		
	ES	ent		· • ·		0.00		
	A)	Ĩ)))		Dural		
	ne	eat	Kegion of Interest(ROI)	ven A	λE58 Ω	r val 0.006		
	idi	Ĕ H	accumbens shell	0	。 10	0.008		
	id	ost	diagonal band of Broca	0	7	0.008		
	alc	٦ ۲	medial preoptic area	1	8	0.013		
	P	mi	infralimbic ctx	0	14	0.015		
		45	substantia nigra reticularis	6	17	0.033		
		1	periaqueductal gray thalamus	24	47	0.037		
	•	(1)	magnocenular preoptic nucleus	U	T	0.042		
							-	

Summary

In summary, the current data indicate that, whilst idalopirdine and donepezil recruit a discrete number of overlapping brain regions including one of the forebrain cholinergic nuclei, the synergistic effect of combining treatment extends beyond the effects of donepezil alone and the cholinergic system, towards recruitment of multiple neural circuits and neurotransmitter systems. Indeed, the combination treatment recruits a constellation of integrated neural circuits associated with cognition, emotion and motivation as well as extroceptive (olfaction) and introceptive cues (brainstem). These may collectively contribute to enhancing cognition, by enriching learning and memory processes with motivational salience and the context of extro- and introception. These data provide new insight into how idalopirdine may extend and complement the benefits of donepezil observed in patients with AD.

Program # 225.06 Poster # Q3

kam Imaging