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Materials & Methods ____Main Results

Probability Maps Comparing Sex Differences in APOE KO Rats with MRI : Measures of T2
Relaxometry, Fractional Anisotropy, Radial Diffusivity and Axial Diffusivity

In the central nervous system, apolipoprotein E (APOE) is produced in glia and
functions in the transport of cholesterol to neurons via APOE receptors. The absence or
dysregulation of this lipoprotein increases risk for vascular disorders and Alzheimer's
disease (AD). The recent development of transgenic homozygous APOE -/- knock out
(KO) rats provided an opportunity to apply a new imaging methodology "in vivo

Each subject was registered to a 3D segmented and annotated
rat brain atlas (Ekam Solutions LLC, Boston MA.). The alignment
process was facilitated by an interactive graphic user interface
EVA. The affine registration involved translation, rotation, and
scaling in all 3 dimensions independently. The matrices that
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differences. In the males this imaging technique complemented the relaxivity measures
as the cerebellum again showed differences between APOE genotypes for fractional
anisotropy and radial diffusivity. In addition, many thalamic areas and their cortical
connections were altered. In females the changes were fewer and localized primarily to
hypothalamus and amygdala.

In this study multiple non-invasive MRI protocols were used to identify putative
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Multi echo images were acquired using MSME pulse sequence (TR=5.4 secand TE: 11, 22, 33, 44, 55, 66,
77, 88,99, 110 msec.) Images were acquired with a field of view [FOV] 3 cm2, data matrix = 128x128x20
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Image Analysis neatzznn [ }é"&iﬁf‘m" j"”:ﬂfg“"“’ « Male APOE KO rats show a significant number of differences in MRI y * Female APOE4 rats show very few significant differences in MRI
- . . e - : : : measures of microarchitecture as compared to wild type

Image analysis included DTI analysis of the DW-3D-EPI images to produce the FA, ADC and RA maps. DTI pm.ce.mm%y*xdm *{,& ‘:amw,us ) measures of mlcroarchltec.ture.as.compared to wild type controls controls P ypP
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automatically screened, prior to DTl analysis, for motion artifacts. Following the elimination of at five months of age 8

differences at 5 months of age.
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acquisition points with motion artifacts, the remaining acquisition points were corrected for linear
(motion) and non-linear (eddy currents/susceptibility) artifacts using SPM8 (Welcome Trust Centre for
Neuroimaging, London, UK).
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