In vivo Neuropathology: Detecting site-specific changes in neuroinflammation following treatment with low doses of known neurotoxins.

****D.S. ATHREYA¹,** S. KEDHARNATH¹, A. PHADKE¹, P.P. KULKARNI¹, C.F. FERRIS^{1,2} ¹Center for Translational Neuroimaging, Northeastern Univ, Boston, MA USA, ²Dept Psychology and Pharmaceutical Sciences, Northeastern Univ, Boston, MA

Background

Twenty-five percent of small molecules in drug development for CNS indications fail in clinical trials due to complications Trimethyltin А. with previously undetected neurotoxicity. Indeed, it is very rostral Trimethyltin infrequent that a drug is flagged for neurotoxic side effects in Pre TMT Post TMT а. early drug discovery. The consequences are two-fold: 1) loss Ave SD Ave SD P val **Brain Area** $2.16 \ 0.39 > 1.62 \ 0.10 \ 0.020$ crus 1 of ansiform lobule of time and money in bringing new drugs to market and, 2) lateral dorsal thalamus $2.24 \ 0.26 > 1.80 \ 0.13 \ 0.020$ the unwitting exposure of patients in clinical trials to the $2.17 \ 0.17 > 1.83 \ 0.10 \ 0.020$ medial septum neurotoxic side effects of what otherwise could be a drug 2.63 0.16 > 2.03 0.19 0.020 superior colliculus $2.33 \quad 0.23 > 1.97 \quad 0.12 \quad 0.020$ visual 1 ctx candidate that is effectively treating the problem. To address 6th cerebellar lobule 2.44 0.24 > 1.90 0.19 0.021 this issue, we developed an MRI protocol "in vivo $2.31 \ 0.16 > 1.88 \ 0.17 \ 0.021$ CA1 dorsal $2.32 \ 0.23 > 1.87 \ 0.13 \ 0.021$ CA3 dorsal neuropathology" identify putative to of areas $2.41 \ 0.25 > 1.94 \ 0.11 \ 0.021$ anterior cingulate ctx neuroinflammation using diffusion weighted imaging and crus 2 of ansiform lobule $2.08 \ 0.31 > 1.52 \ 0.21 \ 0.021$ computational analysis. $2.40 \ 0.20 > 1.94 \ 0.10 \ 0.021$ dentate gyrus dorsal $2.26 \ 0.11 > 2.04 \ 0.06 \ 0.021$ external plexiform layer **Experimental Design** $2.19 \ 0.11 > 1.91 \ 0.04 \ 0.021$ granular cell layer $2.22 \quad 0.23 > 1.81 \quad 0.10 \quad 0.021$ lateral geniculate Female rats, five per group, were treated with either a single IP lateral posterior thalamus $2.51 \ 0.10 > 1.97 \ 0.08 \ 0.021$ $2.37 \quad 0.19 > 1.90 \quad 0.03 \quad 0.021$ primary motor ctx injection for trimethyltin chloride (7mg/kg), a gold standard for $2.56 \ 0.27 > 2.06 \ 0.12 \ 0.021$ periaqueductal gray CNS toxicity; a single IP injection of MK-801 (0.5mg/kg), an 2.45 0.38 > 1.90 0.16 0.021 parabrachial n. NMDA antagonist; a single IP injection of kainic acid $2.43 \ 0.08 > 1.99 \ 0.20 \ 0.021$ parietal ctx 2.66 0.27 > 2.19 0.18 0.021 raphe obscurus n. (10mg/kg), a glutamate agonist; or 7-days gavage for BIA 10retrosplenial caudal ctx $2.54 \ 0.16 > 2.27 \ 0.04 \ 0.021$ 2474 (1mg/kg), a FAAH antagonist. After administration, the retrosplenial rostral ctx $2.62 \ 0.31 > 2.14 \ 0.16 \ 0.021$ rats were returned to their home cage to be left undisturbed primary SS ctx forelimb $2.24 \ 0.15 > 1.84 \ 0.09 \ 0.021$ primary SS ctx hindlimb $2.49 \quad 0.30 > 1.91 \quad 0.14 \quad 0.021$ until imaged 3 and 7 post administration for trimethyltin and 7 primary SS ctx trunk $2.45 \ 0.13 > 1.97 \ 0.19 \ 0.021$ days post administration for all other groups. simple lobule cerebellum $2.47 \quad 0.28 > 1.84 \quad 0.19 \quad 0.021$ 2.25 0.18 > 1.93 0.21 0.021 visual 2 ctx Summary $2.02 \quad 0.14 > 1.77 \quad 0.09 \quad 0.029$ prelimbic ctx primary SS ctx barrel field $2.20 \ 0.12 > 1.86 \ 0.13 \ 0.029$ affected many brain Trimethyltin (A.) The areas $2.70 \ 0.34 > 2.13 \ 0.16 \ 0.042$ central gray 7th cerebellar lobule $2.26 \ 0.38 > 1.65 \ 0.37 \ 0.043$ sensorimotor cortices (yellow) and hippocampus (red) anterior pretectal n. $2.23 \ 0.23 > 1.84 \ 0.27 \ 0.043$ were particularly sensitive. BIA 10-2474 (B.) was limited to $2.20 \ 0.20 > 1.88 \ 0.20 \ 0.043$ CA2 $2.29 \quad 0.21 > 2.02 \quad 0.14 \quad 0.043$ CA3 hippocampus ventral the thalamus (blue). MK-801 (C.) affected many areas dorsomedial tegmental area 2.32 0.33 > 1.88 0.19 0.043 including the thalamus (blue) and cerebellum (green). flocculus cerebellum $2.49 \ 0.37 > 2.00 \ 0.19 \ 0.043$ Kainic acid (not shown) had no significant effect of DWI inferior colliculus $2.73 \quad 0.26 > 2.21 \quad 0.28 \quad 0.043$ $2.35 \ 0.21 > 1.99 \ 0.21 \ 0.043$ lateral amygdaloid n. measures at the dose of 10mg/kg. Postmortem histology $2.86 \ 0.46 > 2.06 \ 0.18 \ 0.043$ locus ceruleus confirmed site-specific microglia activation following medial geniculate $2.25 \ 0.37 > 1.82 \ 0.15 \ 0.043$ paraflocculus cerebellum $2.32 \ 0.27 > 1.92 \ 0.13 \ 0.043$ trimethyltin exposure (data not shown). Histological reticular n. midbrain $2.36 \ 0.32 > 1.88 \ 0.16 \ 0.043$ validation of microgliosis for BIA 10-2474 and MK-801 is in primary SS ctx jaw $1.98 \ 0.08 > 1.77 \ 0.14 \ 0.043$ primary SS ctx shoulder $2.36 \ 0.25 > 1.93 \ 0.16 \ 0.043$ progress. Highlights econdary somatosensory ctx 2.00 0.19 > 1.69 0.14 0.043

• "In vivo neuropathology" is an imaging protocol using DWI and measures of ADC combined with computational **B**. analysis using a 3D MRI rat atlas with 173 brain areas to identify putative sites of neuroinflammation and edema following exposure to potential toxins.

 This non-invasive imaging protocol allows studies on time-dependent neuropathology.

• The global maps of neurotoxic injury can be used to guide histopathology during preclinical drug development. • Analysis is achieved with a minimum number of rats adhering to the laws and regulations around the humane care and use of laboratory animals, providing an alternative to the traditional tests for assessing drug neurotoxicity.

• "In vivo neuropathology" can minimize the cost of Shown above in Tables A., B. and C. are brain areas with significantly different measures of ADC 3 days following TMT exposure. The brain areas are ranked in order of their significance (P-val) and preclinical CNS toxicology, expedite the process, and effect size (omega square). Shown are the average (Ave) and standard deviation (SD) for the five rats. Note that all brain areas following TMT have ADC values lower than normal a possible sign of subtle changes identify in site-specific brain cytotoxic edema. ADC values for BIA 10-2474 and MK-801 are greater than the vehicle, a sign of vasogenic edema. The localization of the significantly affected areas listed in the tables are presented microarchitecture across the entire brain. in the 2D heat maps and 3D reconstructions.

caudal

BIA 10-	-2474	l.					
	Vehicle			BIA 10-2474			
Brain Area	Ave	SD		Ave	SD	P val	
dorsal raphe	2.06	0.18	<	2.74	0.41	0.014	
lateral geniculate thalamus	1.78	0.16	<	2.15	0.35	0.027	
medial dorsal thalamus	1.81	0.16	<	2.16	0.27	0.027	
supramammillary n.	2.19	0.38	<	2.95	0.44	0.037	
ventral posteriolmedial thalamus	1.75	0.12	<	2.07	0.30	0.037	
ventrolateral thalamus	1.76	0.14	<	2.06	0.28	0.049	
anterior thalamus	1.84	0.16	<	2.11	0.26	0.050	
habenula n. thalamus	2.27	0.33	<	2.84	0.34	0.050	
reticular n. thalamus	1.86	0.12	<	2.14	0.28	0.050	
ventral posteriolateral thalamus	1.77	0.14	<	2.06	0.29	0.050	

Acknowledgement: We thank Ekam Imaging for supporting these studies.

С.

Northeastern University Center for Translational Neuro-imaging

PSTR202.16 / W25

MK801

MK801										
MIXC	Vehicle			MK801						
Brain Area			Ave SC			P val				
lateral amyodala	2 12	0.27	<	2 76	0.31	0 009				
5th cerebellar lobule	2 15	0.17	2	2.91	0.43	0.009				
ectorhinal ctx	1.98	0.07	<	2.71	0.23	0.009				
inferior colliculus	2.22	0.16	<	2.93	0.50	0.009				
trapezoid body	2.24	0.26	<	3.24	0.66	0.009				
root of trigeminal nerve	2.57	0.28	<	3.23	0.53	0.016				
4th cerebellar lobule	2.10	0.19	<	2.86	0.52	0.016				
6th cerebellar lobule	1.89	0.26	<	2.62	0.38	0.016				
entorhinal ctx	2.36	0.20	<	2.90	0.32	0.016				
parvicellular reticular n.	2.36	0.20	<	3.22	0.65	0.016				
raphe magnus	2.17	0.18	<	3.19	0.70	0.016				
cochlear n.	2.23	0.27	<	3.01	0.50	0.016				
subiculum dorsal	2.22	0.13	<	2.77	0.48	0.021				
basal amygdala	2.06	0.18	<	2.54	0.32	0.028				
dentate gyrus dorsal	2.09	0.12	<	2.56	0.41	0.028				
caudal piriform ctx	2.08	0.11	<	2.56	0.25	0.028				
perirhinal ctx	2.11	0.25	<	2.62	0.33	0.028				
3rd cerebellar lobule	2.20	0.27	<	2.98	0.56	0.028				
7th cerebellar lobule	1.88	0.21	<	2.60	0.56	0.028				
8th cerebellar lobule	1.90	0.28	<	2.69	0.50	0.028				
9th cerebellar lobule	2.04	0.34	<	2.91	0.57	0.028				
anterior pretectal n.	1.93	0.20	<	2.53	0.48	0.028				
CA1 dorsal	2.04	0.08	<	2.52	0.41	0.028				
gigantocellular reticular n.	2.42	0.23	<	3.29	0.67	0.028				
lateral dorsal thalamus	2.03	0.23	<	2.44	0.37	0.028				
medial cerebellar n. fastigial	2.51	0.40	<	3.32	0.52	0.028				
periaqueductal gray	2.24	0.16	<	2.81	0.55	0.028				
pontine nuclei	2.41	0.32	<	3.12	0.60	0.028				
periolivary n.	2.67	0.33	<	3.57	0.73	0.028				
parietal ctx	2.00	0.17	<	2.51	0.42	0.028				
primary SS ctx trunk	1.98	0.16	<	2.48	0.39	0.028				
substantia innominata	2.20	0.22	<	2.65	0.37	0.028				
superior colliculus	2.03	0.15	<	2.72	0.53	0.028				
visual 1 ctx	2.11	0.26	<	2.66	0.35	0.028				
vestibular n.	2.38	0.28	<	3.27	0.78	0.028				
ventral posteriolateral thalamus	1.93	0.22	<	2.36	0.31	0.028				
CA3 dorsal	2.07	0.19	<	2.53	0.41	0.036				
parabrachial n.	2.12	0.28	5	2.89	0.69	0.036				
	1.90	0.25	2	2.43	0.37	0.030				
paranocculus cerebellum	2.11	0.35	2	2.70	0.33	0.047				
submannus vieuel 2 etv	2.12	0.20	2	2.04	0.45	0.047				
VISUAI 2 CIX	1.94	0.13	2	2.30	0.43	0.047				
2nd corobollar lobulo	2 22	0.25	2	2.30	0.59	0.047				
anterior thalamus	1 97	0.10	2	2.50	0.37	0.047				
auditory cty	2.02	0.20	2	2.00	0.41	0.047				
autory cix	2.02	0.20	2	2.45	0.41	0.047				
crus 1 of ansiform lobule	1.85	0.13	2	2.41	0.35	0.047				
dorsal lateral striatum	1.84	0.23	2	2.40	0.45	0.047				
inferior olivary complex	2 69	0.23	2	3.46	0.54	0.047				
lateral geniculate	1.95	0.20	~	2 43	0.43	0.047				
lemniscal n	2.26	0.40	<	2.92	0.59	0.047				
medial amygdaloid n.	2.68	0.17	<	3.11	0.27	0.047				
paraventricular nuclus	2.41	0.26	<	2.99	0.48	0.047				
parafascicular thalamus	1.92	0.26	<	2.43	0.47	0.047				
paramedian lobule	2.17	0.53	<	2.73	0.43	0.047				
pontine reticular n. caudal	2.14	0.21	<	2.94	0.79	0.047				
posterior thalamus	1.89	0.24	<	2.40	0.43	0.047				
principal sensory n. trigeminal	2.18	0.28	<	3.02	0.71	0.047				
retrosplenial caudal ctx	2.34	0.26	<	3.02	0.47	0.047				
simple lobule cerebellum	1.91	0.20	<	2.69	0.54	0.047				
tenia tecta ctx	2.64	0.46	<	3.34	0.45	0.047				
ventral anterior thalamus	1.87	0.26	<	2.39	0.39	0.047				
ventrolateral thalamus	1.88	0.25	<	2.38	0.37	0.047				
ventromedial thalamus	1.88	0.28	<	2.33	0.35	0.047				

